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Introduction 

 

 

 

 

Following Coulomb’s and later Rankine’s work the physical-mechanical theoretical 

research of granular materials has been characterised by the use of stress analysis 

deduced for solids since the 18th century. Others seem to detect the characteristic 

features of viscous liquids in granular materials, therefore they describe the physical 

behaviour of granular materials using the laws pertinent to viscous fluids. In my 

opinion most of the theorems, which were put for cotinuums, cannot be applied to 

the aggregation of separate, solid granules. Only those natural laws can be 

considered as the starting point of examination, which are also valid for the universal 

material. 

 

This work – breaking away from the previous tradition – would like to approach the 

physical mechanical properties of granular materials from a new point of view. As a 

result, the critical analysis of theories formulated earlier in this research area is not 

the objective of this paper, since the new principles were laid down irrespective of 

those hypotheses. Contrary to the continuum theory, by examining the equilibrium 

and kinetic state of individual granular particles this new thesis is based on simple 

experiments, on the Newtonian laws, and on an empirical law, the law of friction. 
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Granular material as a distinct state of matter 

 

 

 

 

 

The physical appearance of materials found in nature is quite varied. The most 

substantial part of the Earth’s surface is covered by oceans, seas, lakes, that is to say, 

covered by water. The dry land is more diverse: one can find rocky mountain ridges, 

surfaces covered by gentle slopes and deserts with sand dunes. In places the earth is 

covered by snow or ice in winter. Above the surface level the wind is blowing, or we 

can experience a period of calm, that is to say we can feel the air. The sun is shining 

above us and we know that inside the sun one would find another state of matter. 

The outward form of the water that covers substantial part of the Earth is in itself 

diverse. At normal temperature and pressure water is liquid, but with the increase of 

temperature it evaporates more and more quickly, and it turns into water vapour. Fog 

or clouds form. When water vapour freezes, and precipitates in cold, then snow falls, 

and it condenses into a granular material. When snow melts, the result is liquid, 

which in turn becomes solid when it freezes. That is to say water can exist in liquid, 

vapour (gas), snow (granular) and ice (solid) states. In each of its phases water has 

different physical properties, and behaves conforming to different laws. 

 

Physics differentiates among the most prominent forms of appearance of material by 

classifying them into the different states of matter: plasma, gas, liquid and solid 

Some material cannot be put strictly under one category, because they bear the 

physical properties of two or more states of matter. These materials, however, can be 

described by applying the laws pertaining to materials in a similar state of matter. 
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Granular material cannot be put under any one of the above mentioned four 

categories. Furthermore the physical-mechanical properties of granular material do 

not make it possible to describe its behaviour successfully using the physical laws of 

one or more phases. 

 

A granular material is a conglomeration of large number of solid particles related to 

one another, where the granules – as the constituent of the aggregate – in spite of the 

affecting forces retain their form, and the incidentally arising cohesive force between 

the granules is substantially smaller than the inner cohesion of the individual 

granules.  

 

The overall, coherent physical system of granular material has not been set up yet, 

scientific analysis is available only for a few prominent, primarily soil mechanical 

problems. Several theories have been applied for the handling of these problems, 

which speculations, however led to contradictory results. Furthermore no connection 

resting on firm, uniform physical foundations exists between the theories, or if there 

is a relation, it is disputable. The majority of mechanical theories dealing with 

granular materials apply the method of stress analysis deduced for solids, which 

procedure presupposes, that the granular material is a solid phase continuum. 

 

There are theories, according to which granular materials can be approached with 

the laws pertaining to viscous liquids, since granular material exhibits viscoelastic 

and viscoplastic properties. Although, the difficult theoretical notions provide an 

approximate solution to individual mechanical problems, they cannot be applied to 

an overall, reliable description of granular material behaviour. 

 

The opinions concerning the state of matter of granular materials are not unanimous. 

This is reflected in the fact that granular material does not have a single uniform 

name, for example the following designations: scattering, powderlike, loose, 

granulated, grainy, particulate, granular and gritty are all used.  

 

The physical behaviour and properties of granular materials exhibit substantial 

qualitative difference from the materials in other states of matter, and should 

therefore be considered an additional state of matter in its own right  
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The idealised notion of granular material makes the simplified explanation of its 

physical behaviour, properties and origin possible, similarly to the hypotheses 

applied to perfect gases, ideal liquids and crystalline solids. The ideal granular 

material is a conglomeration of large number of solids (granules) where the mass of 

the solid particles is small compared to the mass of the material, in this aggregate 

attractive force does not operate between the particles, Coulomb friction rule 

governs them.  

 

 

 

Physical properties of the granular material in relation to the different 

states of matter 
 

 

The basis for classification according to states of matter depend on the question 

whether the material can hold its own shape and volume or not. The basic criteria of 

classification of the three classical states of matter are the following: 

- gases: have no definite shape or volume; 

- liquids: have no definite shape, but have definite volume 

- solids: have definite shape and volume. 

 

Regarding the question of definite shape and volume it is the characteristic of the 

granular material that: 

- In part it has definite shape, the granular aggregate holds its shape in the angle 

of repose, but under this angle it takes the shape of its container. This attributive 

places the material between liquids and solids. 

- In part it has definite volume, but it can be compressed to a limited extent. The 

compressibility of granular materials stands between the compressibility of gases 

and solids. 

 

The researches on substance structure concerning the states of matter found that the 

determining factors in the question whether a material holds a definite shape or 

volume lie in the physical properties of its constituents and the nature of interaction 

between these particles. For this reason modern physics studies the kinetic state of 

the smallest particles attributed to the material, their relative position and the particle 

interaction when defining the different states of matter. This made it possible that in 
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natural science, in addition to the three classical states of matter, a fourth state of 

matter, was accepted, the plasma state. 

 

It seems to be necessary to emphasise the expression smallest constituent 

characteristic of the material, since it is of primary importance in the definition of 

the different states of matter. Consequently 

- A material in plasma state consists of the disintegrated parts of molecules or 

atoms, the molecule ions or atomic ions. The plasma state is characterized by the 

interactions of atomic or molecule ions and electrons, and not by the other parts of 

the atom or molecule.  

- The physical properties of a material in the gas state are determined by the 

interactions of gas molecules – in case of noble gases the interactions of atoms. 

- Regarding liquids the determining factors are again the movements of the 

atoms or molecules, and the nature of relation between them. In the case of water it 

is the interactions of H2O molecules and not the hydrogen or oxygen atoms, or the 

water drop, which characterize the liquid. 

- In the case of crystalline solids the physical properties of a material in the solid 

state can be explained with the nature of interaction of the atoms, molecules or ions 

positioned in the lattice nodes of a crystal structure, and cannot be described for 

example with the interactions of elemental crystals and crystallites, or with the 

individual properties of the atoms and its parts, which constitute the molecules 

positioned in the lattice points. 

- In the case of granular material the smallest constituent characteristic of the 

material is the granule. The atomic particles, the atoms and molecules that constitute 

the granules, are not direct characteristics – at least in physics they cannot be 

regarded as significant physical properties– of a material, just like as in the case of 

gases and liquids, where material is not characterised by the atomic particles, which 

constitute the atom or molecules, or by the individual physical properties and 

interactions of atoms either.  

 

The most significant characteristics of the three classical states of matter can be 

summarised in the following way: 
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Gaseous state: The molecules of gases – in case of noble gases the gas atoms – 

move freely in the space available for them, they collide elastically with one another 

in a random motion. The average distance between the constituting particles of gases 

is relatively big in proportion to their size, the intermolecular forces between the 

particles are very weak. In the case of ideal gases intermolecular force can be 

disregarded. Molecules move with a translational, rotational and vibrational motion. 

Gases evenly fill the space available for them, that is to say they have no definite 

shape or volume. 

 

Liquid state: The intermolecular forces between the smallest constituents 

characteristic of liquids, between the atoms or molecules are strong enough to 

prevent the particles moving away from each other as a consequence of thermal 

motion, but not strong enough to prevent their change of position. Compared to 

gases, the translational motion of the molecules are smaller, while they also carry 

out rotational and vibrational movement.  Due to their motion and proximity the 

constituting particles collide elastically with one another all the time, thus touch one 

another, therefore liquids have a definite volume. The force of attraction between the 

particles is so small compared to the Earth’s gravitational force that it is not enough 

for individual shape formation, as a result liquids have no definite shape.  

 

Solid state: The smallest constituting particles, characteristic of solids are the atoms, 

molecules or ions. Their position is fixed and geometrically determined in a 

crystalline structure, particles carry out only vibrational motion. The intermolecular 

forces are strong, which prevent their permanent displacement from their state of 

equilibrium. As a result solids have definite shape and volume.  

 

Granular material exhibits significant differences from the aggregational properties 

of the three classical states of matter. The constituents of an ideal granular material, 

the granules are at a relative rest. There are no forces of attraction between the 

particles, the material is kept in an aggregate by the compressive forces originating 

from the gravitational force, by the shear forces arising on the surface of the 

granules, and by the static friction force. Due to these forces the ideal granular 

material remains stable until the angle of repose is reach, thus it has only partly a 

definite shape. The constituting particles are in constant contact, therefore in 
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quiescent state granular material has definite volume. Under pressure the material is 

compressed, the granules take up a more efficient space filling position. The 

compressibility of granular material is small compared to gases, but it is big in 

comparison to solids. 

 

The physical properties of ideal granular material exhibit the following significant 

differences in characteristics compared to the features of other states of matter: 

- In contrast to gaseous state: the constituting particles are in constant contact 

with each other, and it has definite volume; 

- In contrast to liquid state: granular material has in part a definite shape; 

- In contrast to gaseous and liquid state: The constituting particles are in a 

relative collision free, quiescent state and static friction force – shear force – arise in 

them; 

- Solid state: there is no attractive force between the constituting particles, 

therefore granular material has only in part a definite shape. 

 

Granular material exhibits such qualitative differences concerning the most 

substantive characteristics of the different states of matter that its definition as a 

separate state of matter in its own right becomes justified. 

 

The brief, straight to the point definition – with no pretence to completeness – of the 

idealised case of the states of matter is the following. 

Perfect gas: disordered aggregate of molecules (in case of noble gases atoms) with 

no intermolecular forces, where the molecules move far apart from each other, 

undergoing random elastic collisions. 

Ideal liquid: Aggregate of molecules moving close to each other, undergoing 

constant elastic collisions. 

Crystalline solid: The ordered aggregate of vibrating atoms, molecules or ions, 

which are fixed in their structure with great force. 

Ideal granular materials: the aggregate of relatively static particles, which are in 

constant contact with each other, in this assembly the force between the constituting 

particles is composed of the compressive force arising from the gravitational force 

and of the friction force, which is proportional to it, there is no cohesion force 

between the particles.  
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The notion of granular material, as a separate state of matter is primarily important 

from a mechanical viewpoint. (The basis for categorization into different states of 

matter has a mechanical origin: the reason for having a definite shape or volume can 

be deduced from the intermolecular forces between the constituting particles.) The 

mechanical properties of the different states of matter show distinctive, substantial 

differences: 

- gases respond to an increase in pressure with the significant reduction of their 

volume (at constant temperature the multiplication product of volume and pressure 

is constant), therefore they can withstand compressive stress only in part, at the 

expense of volume change. In perfect gases there is no attractive force between the 

constituting particles, therefore no tensile stress can arise in the material. In static – 

not flowing – gases no shear stress arises. 

- liquids has small compressibility, from a mechanical point of view they can be 

regarded incompressible, therefore they can withstand compressive stress. The 

intermolecular forces are strong enough to prevent the constantly colliding 

molecules from moving far away from one another. The state of equilibrium or 

stability can only be attained under a given outside pressure, that is to say, from a 

mechanical standpoint a liquid cannot withstand tensile stresses. (When the pressure 

is around p=0 the liquid breaks up, its molecules fly apart and turn into gaseous 

state) There is no friction in ideal liquids, in real liquids static friction does not arise 

either. 

-  solids can be regarded as incompressible, the constituting particles join 

together with great force, therefore they can withstand tensile, compressive and 

shear stress. 

- ideal granular material has small compressibility, therefore it can withstand 

compressive stress. In the non-cohesive granular materials only shear stress arises in 

addition to compressive stress, no tensile stress manifests itself. 

 

 

 

Granular material as a state of matter 
 

 

The notion that granular material must be regarded as a separate state of matter can 

be justified not only because its distinct physical properties, which differentiate it 



 - 11 - 

from other states of matter, but also because granular material is one of the existing 

outward forms of raw material, that is to say it is one of defined states of matter. 

 

Granular material – as the conglomeration of large number of solids, where the 

constituting solids are small in proportion to the total mass of the material – 

generally comes into being when large-sized solids are mechanically cut up, or when 

the solids themselves break up into smaller pieces. Its formation, that is to say, the 

bringing of the material into a granular state can be achieved not only in a 

mechanical way, as it is also true for the granular materials in nature, which were 

formed not exclusively by mechanical disintegration either. Granular material can be 

produced via a thermodynamic method. 

 

It is known, that if the kinetic energy of the molecules of a liquid exceeds a 

threshold it changes into gaseous state and if it goes below another threshold the 

liquid turns into solid and the process of crystallization begins. The threshold values 

of the thermodynamic state parameters characteristic of the different states of matter 

can be illustrated in a p – t (pressure-temperature) diagram. In Figure 1 the p – t 

diagram of H2O can be seen.  

 

             

         

Figure 1.  p-t diagram of H2O 
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The curve that joins the triple point and the origin of the p – t diagram is called the 

sublimation curve. The material passes from the solid ice phase into the vapour 

phase of the gas state by for example pressure reduction and by the crossing of the 

sublimation curve. Crossing the sublimation curve backwards, from vapour phase 

granular snow is formed not ice. The granular material – in case of water, the snow – 

comes into being as a result of crystallization in the local clusters. The process can 

be called local crystallization, the physical explanation of which lies in the 

phenomenon that the molecules which move with slow translational motion (under 

low temperatures) cannot leave the attraction field of the van der Waals type forces –

for example as a result of heat loss – therefore the translational motion of the 

molecules ceases.  

 

The molecule pair - bonding the new molecules, which collide into them - form a 

crystal lattice, the growing crystals then bring about the granules. The density of 

molecules in the gaseous state is very low in comparison to the molecular density of 

the solid state, therefore the local crystallization processes, which are relatively far 

from one another bring about the multitude of separate granules, which after having 

precipitated form a granular conglomeration. 

 

Under constant temperature the process of getting from gas phase to granular phase 

is accompanied by heat loss, which is the sum of the melting and the evaporation 

heat. 

 

The states of matter change at the phase boundaries of the p – t diagram. If the 

matter crosses the sublimation curve from the solid phase toward the gas phase, we 

will get a gas, however changing the direction crossing the curve from the gas phase 

we will obtain a granular material. Thus the states of matter, in compliance with the 

direction of crossing the phase boundaries are the following:  

  gas → local crystallization → granular → melting → liquid → evaporation →gas;  

nevertheless, from the other direction:  

  gas → condensation → liquid → freezing → solid → sublimation → gas. 

From granular phase to solid phase we can get by crossing the same phase boundary 

twice:  
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  granular → melting → liquid → freezing → solid. 

 

Granular material can be produced directly from liquid phase if we place a multitude 

of crystal nuclei - which are approximately at an equal distance from one another - 

into a supercooled liquid at the same time. The crystal growth is hindered by the 

neighbouring crystals, whose geometric crystal position is not symmetrical or 

congruent, therefore no or only occasional lattice forces develop between the 

crystals, the inner cohesive force of the individual granules are substantially greater 

than the incidental cohesive forces acting between the granules.  

 

The substantial physical properties of the granular material differ significantly from 

the characteristics of those materials whose chemical properties are identical, 

nevertheless belong to the solid, liquid or gaseous state. Its volume weight, its 

refractional, thermodynamical, acoustic, electric and mechanical properties and 

behaviour, and the fact that most material can be brought into granular state justifies 

the classification of the granular material as a distinct state of matter by its own 

right. 
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Basic physical-mechanical laws of the non-

cohesive granular materials 

 

 

 

I. In the non-cohesive granular materials only compressive and shear stresses 

can develop. 

 

II. In the non-cohesive granular materials at a quiescent state the stresses 

developed by the vertical-direction compressive stresses act downwards in the 

 090  zone measured from the vertical direction. (  is the angle of friction of 

the material.) 

 

III. The value of the lateral pressure rising from the self-weight of the non-

cohesive granular material is (
2

h
), the half of the product of the depth (h) and 

volume weight (γ), its direction deviates from the horizontal downwards with the 

angle of friction developed in the material, if the surface is horizontal and over the 

given depth the material fills the space evenly closing an angle   with the 

horizontal. 

 

IV. The non-cohesive granular materials conform to the physical-mechanical 

laws characteristic of them until their constituting elements, the grains keep their 

relative quiescent state. When the grains go into motion – collide with each other -, 

the granular materials behave according to the physical-mechanical laws of the 

liquids. 

 

The physical-mechanical laws of the non-cohesive granular materials prevail with a 

statistical character, because the material itself consists of a multitude of different 

grains. 
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Law I 

 

 

Law I is the physical-mechanical definition of the non-cohesive granular materials. 

 

In ideal liquids only compressive stresses develop, the non-cohesive granular 

materials are capable of withstanding compressive and shear stresses, while solids 

are capable of bearing compressive, shear and tensile stresses. The non-cohesive 

granular materials differs from the solids in the respect that they are not capable of 

withstanding tensile stress, and they are distinct  from the ideal liquids because shear 

stresses also develop in them. At the same time the components of the liquids are in 

constant relative motion – collide with each other -, while the components of the 

granular materials, the grains are in a relative quiescent state.  

 

 

Law II 

 

 

Law II formulates the direction of the spreading of the vertical compressive stresses. 

The natural stability of the free slope provides its experimental proof (Figure 2). 

 

 

Figure 2.  The boundary equilibrium position of the grain located 

on the side of the slope 
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In the conglomeration of grains the self-weight of the grains produces the vertical 

compressive stress. If a stress vector acted on the grain marked A located on the side 

of the slope– in boundary equilibrium position - inclined at an angle of more than 

090  from the vertical then the grain would loose its equilibrium position and 

slide down. 

       

       Figure 3.  The stresses developed by the vertical compressive stresses 

incline at an angle bigger than   to the horizontal. 

 

Further experiments prove the correctness of the Law II (Figure 3). If a compressive 

stress making a smaller than   angle with the horizontal acted on the grain marked 

A, the angle of inclination angle   of the natural slope would be smaller than  . If 

the vertical compressive stress induced, for example, a horizontal stress, it would 

thrust down the grains located on the side of the slope. The material would spread 

and would take a kind of shape that is illustrated in Figure 4. However, it does not 

exist. 

                                                

Figure 4.  If the compressive stresses induced horizontal stresses, this 

would be the position of the granular material. 



 - 17 - 

 

Law III 

 

In the cases described in the Law III the lateral pressure is 
2

h
, and its direction 

inclines from the horizontal downward with the angle of friction rising in the inside 

of the material. Its proof is as follows: 

             

Figure 5.  Infinite Quadrant of the Horizontal Terrain 

 

Figure 5 shows that part of the non-cohesive granular material aggregate of infinite-

expansion and horizontal-terrain, which is  cut out theoretically by two vertical 

planes perpendicular to each other, (consequently, it shows an infinite quadrant of 

the horizontal terrain,) which makes the planar execution of the mechanical tests 

possible. According to the Law II, from the material part under the section AB only 

reaction stresses produced by the material part over the plane AB can act on the 

plane OA. If we took off the granular material located in the triangle OAB, then the 

material would remain stable in the natural angle of repose AB inclining at an angle 

  to the horizontal. On the plane OA, stresses can only rise from the self-weight of 

the granular material located in the space part OAB. On the plane AB an equilibrium 

boundary position exists; the material having a friction coefficient of  tg  does 

not slide as yet on the slope with an inclination of angle  . If we increased the slope 

angle with   of a very low value, then the material above it could slide down with 
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constant acceleration on the slope with the inclination angle   , i.e. it would 

exert a force in direct  proportion to its mass and acceleration on the plane OA. Due 

to the physical properties of the granular materials there are infinitely many slopes 

with an inclination angle   , above which angle, on the slopes increased by the 

angle  , the weight of the materials exerts slope-direction stresses on the plane 

AO. According to Figure 5, on the slope with an inclination angle of   , 

produced as a result of the depth increased by Δh, the granular material ADC weighs 

heavily on the slope with its self-weight (ΔG) and with the weight of the material 

located above it (G). The material amount ADC is supported on section Δh. The 

projection of the surface section Δh, perpendicular to the slope is 

)cos(   hF . Considering that the Δh is very little, therefore, the stress 

distribution can be considered even, so it can be stated for the slope-direction stress 

developed there:  

,
)cos)(sin(

F

GG









 

In the unit-length space part 
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furthermore, 

).cos(   hF  

The (  cossin  ) in the equation can also be expressed: 
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Substituting the values of the G, ΔG, ΔF and  cossin   into the relation 

written for the 
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but the tg  can be expressed from the triangle ACE of Figure 5: 
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,
2 h

hhh 



  

,
2



hh 
  

if the Δh is very little, that is Δh → 0, then α → , consequently   →  , i.e. the 

direction of the stress inclines at an angle   to the horizontal. Consequently, 

,
2

lim
0




h

h




 

that is, 

2




h
 . 

As a result of the deduction it can be established that the stress distribution is linear 

against the depth. 

 

However, in case of granular materials one cannot speak of a stress in the classical 

sense, since the force effects are transmitted at the contact points of the granules, i.e. 

from one point to another, not on a surface perpendicular to the given direction. Not 

on a surface, because the material is a discontinuum and the grains touch each other 

only at points. Therefore, the meaning of the stress can be interpreted as the average 

force imparted to one surface and these average forces are transferred from one 

granule to another. The direction and size of these forces manifest themselves as a 

statistical average on a given surface. 

            

Figure 6.  Division of the average force acting on the grain located 

next to the wall into a horizontal and a vertical component 
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Let us examine what the magnitude of the force is, which the above deduced stress 

 , inclining at an angle   to the horizontal, exerts on a vertical wall. Through the 

contact points force arrives from the neighbouring granules at the grain –which is 

supported by a frictionless vertical wall – shown in Figure 6. The resultant of this 

force effect should be equal with the product of the stress   calculated for the 

surface 1F , i.e. considering its magnitude and direction the compression force 

acting on this grain corresponds to the statistical average of the force exerted at this 

depth in the given granular material. This granule presses the vertical frictionless 

wall with a horizontal xF 2  force on the wall section 2F  at the contact point. The 

vertical-direction force 3Fy  is received by the grain or grains located under it. 

The surface of sections 1F , 2F  and 3F  are equal surfaces on statistical average, 

because, considering their shape and position, the grains are spheres on statistical 

average; the projections of the spheres from any direction are of equal surface area. 

(If a granular material – for example, rice – consists of oblong grains; considering 

the random arrangement of the grains the average of their projection taken in any 

direction is a circle, i.e. the grains must be considered as spheres on statistical 

average.) 

Consequently, it can be written for the vector triangle of the Figure 6 

  cos12 FFx  , 

but since 

21 FF  , 

therefore 

  cosx . 

It comes from the result of the above consideration that in granular material the 

stresses – the average forces calculated for a given surface – can be decomposed or 

added as vectors. From the   cosx  equation the factor of static pressure is 

received after the 
y

x




   substitutions, that is 

 hy                  


 cos
2

h
x  , 

so     
2

cos
  . 



 - 22 - 

 

Up to this point, only the shear stresses generated by the stresses acting 

perpendicularly to the direction inclining at an angle   to the horizontal and rising 

from the self-weight were taken into account at the deduction of the static pressure. 

The shear stresses y , produced by the horizontal stress components - 




 cos
2

h
x   - reduce the vertical stresses hγ with 


 tg

h
y  cos

2
, 

that is 

,
cos

sin
cos

2 







h
y   

so 




 sin
2

h
y  . 

Considering that the stresses   act in pairs on the theoretic plane OA assumed 

inside the granular material (Figure 5), therefore, the vertical-direction stresses hγ 

are reduced by 2 y , consequently 

yy h  2 , 

that is  

,sin
2

2 



h

hy   

and 

)sin1(   hy . 

Consequently, the figure of the stresses acting inside the non-cohesive granular 

materials at quiescent state can be constructed (Figure 7). 

                             

Figure 7.  Stresses acting at a quiescent state 
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If the plane OA according to Figure 5. is a theoretic plane assumed inside the 

granular material, then the angle of friction is   there. In this case a compressive 

stress of  , inclined at an angle   to the horizontal acts on both sides of the plane 

OA  (Figure 7.). On the plane OA the  ’s can be divided into horizontal and 

vertical components (Figure 8.). The horizontal components have the value 




 cos
2

h
x  , 

they are perpendicular to lane OA and satisfy the action-reaction law. The vertical 

stress components of y  complement the vertical stresses to hγ symmetrically to 

plane OA in a reciprocal way. 

                                   

Figure 8.  The horizontal and vertical stress component at a quiescent state 

 

If the plane OA according to Figure 5 is a frictionless wall, then that is capable of 

taking only horizontal stress, i.e. the horizontal component of the  , which is 




 cos
2

h
x  . 

At the same time the vertical component of the   complements the vertical stress 

component of the material OAB to hγ. 

 

If the plane OA is an actual rough, rigid wall, which serves to support the OAB 

material amount, then the development of the static pressure can be interpreted as 

follows. 
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After filling up the OAB material amount behind the OA wall the value of the 

2


 

h
 is not reached immediately, since due to the inclined stress effect and 

because of the friction rising on the wall a weight force intake is realised on the 

plane OA. As a result of the weight-force intake the force acting on the plane AB is 

reduced; so it is not capable of producing stresses with the value of 
2

h
 and in the 

direction AB. The freshly filled-in material comes to a standstill by finishing its 

consolidation motion. As a result of the quiescent state the friction rising on the wall 

is reduced to zero, consequently the stresses   are decomposed into their 

horizontal and vertical components. In the OAB material the vertical components 

complement the vertical stress components to hγ, and supplement the weight of the 

OAB material to 


ctg
h

2

2

. At this time the horizontal component of stress   acts 

on the OA wall. Consequently the horizontal component of the static pressure is: 

,cos
2





h

x   

and, therefore the factor of static pressure is (λ):  

2

cos
  . 

 

 

 

Law IV 

 

 

Law IV can be proved experimentally. 

As a result of the experiment demonstrated in Figure 9, due to the collision of the 

grains, the granular material behaves according to the laws of the communicating 

vessels. 
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Figure 9.   a) state of rest   b) state formed as a result of vibration 

 

In Figure 10 as a result of the vibration, and due to the collision of the grains the 

body with bigger volume weight γ1 and the body with smaller volume weight γ2, - 

which were place into the granular material with volume weight γ - sinks to the 

bottom of the vessel, or floats on the surface of the granular material respectively; 

consequently the law of Archimedes prevails. 

        

Figure 10.   a) state of rest   b) state developed as a result of the vibration 

 

As a result of the vibration the components of the granular material, the grains 

collides into each other, and due to this effect the pressure changes to hγ in every 

direction. 
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Stresses in the non-cohesive granular materials 

 

 

 

 

 

We performed the examination of the horizontal plane quadrant cut out by the 

vertical plane in the proving procedure of the Law III. If this plane inclines towards 

the material compared to the vertical, – closing an angle β with the horizontal, - and 

the terrain is horizontal, then, generalizing the former deduction the magnitude of 

lateral pressure of this granular assembly can be determined in the plane of angle β. 

            

Figure 11. Infinite quadrant of the horizontal terrain confined 

with an inclined plane 

 

Using the markings of Figure 1, it can be said that the ADC granular material weighs 

on the slope with an inclination angle   , produced as the result of the Δh 
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depth increase(as it is marked on Figure 11) with its self-weight (ΔG) and with the 

weight of the material above it (G). Line segment Δh supports the ADC material 

amount in order to prevent its sliding down. Since Δh is very little, therefore, the 

stress distribution can be considered even in the area, thus the following can be 

formulated for the slope-direction stress rising there: 

,
)cos)(sin(

F

GG







  

where the ΔF is the projection of the surface segment Δh perpendicular to the slope. 

  

Figure 12.  h  part of Figure 11.  Figure 13.  F part of figure 11. 

 

The G given in the equation can be expressed for the unit-long space parts ΔG and 

ΔF from Figures 11, 12 and13: 

),(
2

2




ctgctg
h

G   

and  





sin2

hm
G , 

where m can be expressed with the help of Figure 11: 

)sin(   zm , and ,
)90cos( 0 




h
z  

thus 

),sin(
)90cos( 0










h
m  
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that is  

),sin(
sin








h

m  

Replacing the value of the m into the relation written for the ΔG:  

.
sinsin

)sin(

2 











hh
G  

The value of ΔF can be expressed with the help of Figure 13: 

 ,)(sin   zF  

 .)(sin
sin








h

F  

The equality 





cos

sin
cossin


  was deduced during the proof of the Law II. 

Replacing the value of G, ΔG, ΔF and  cossin   into the relation written for 

the σα:  

 
,

cos

sin

)(sin
sin

sinsin

)sin(

2
)(

2

2














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



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


h
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 
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)(sin

sinsin

)sin(
)(
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sinsin
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







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
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
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)cos()sin(

)cossin()cossin(
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1

2 






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







ctg
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,
)cos()sin(

cossin

cos2 


















ctg

ctg

h

hhh
 

but ctg  can be expressed from the triangle ACE of Figure 11 by employing the 

triangle ADF of Figure 12:  

m

AFCD

m

AE
ctg


 , 

where:           
sin

h
CD                                 and           )cos(   zAF , 
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but             
 sin)90cos( 0

hh
z







 , 

therefore        )cos(
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






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F , 

so 

     ,
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m

hh
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


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
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replacing the value of ctg  into the relation of the 
 :  
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ctghhh
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),1(
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 tgctg
hh
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

  

if Δh is very little, that is Δh → 0, then α →  , consequently 
  →  , i.e. the 

direction of the stress closes an angle   with the horizontal. 

 

Consequently 

),1(
2
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0




 tgctg
h

h
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that is 
















tg

tgh
1

2
. 

The horizontal component of the   is: 

)
sin

(cos
2 







tg

h
h  . 

Examining the three special values of the slope angle β of the plane, (which is the 

angle at which the plane inclines to the horizontal), it can be established that if 

  , then 0 , i.e. the non-cohesive granular material will stop in the free 

slope without support. 

If 090 , then the static pressure acting on this plane is: 

2




h
 , and 


 cos

2

h
h  . 

If
2

450 
  , then the static pressure acting on this plane is: 






sin1

1

2 
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h
, and 





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
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2
45

2

0 
 tg

h
h . 
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Active stress state 

 

 

 

 

 

Development of the active stress state 

 

 

The small-size horizontal-direction displacement – tilt – of the vertical wall 

supporting the non-cohesive granular material being in a state of rest causes 

expansion in the material. The motion of the material follows the displacement of 

the retaining wall into the horizontal direction loosened up, which appears as a 

relatively two-direction displacement from a given point of the interior of the 

material. As a result of the displacement following the expansion, the effect of the 

shear stresses mobilised by the horizontal stress components of the static pressure 

ceases (breaks up). The relatively two-direction displacement inside the material 

terminates the vertical-direction shear stresses in pairs, therefore the vertical stress 

increases to hγ. At the same time the material begins to carry out a consolidation 

motion. 

 

Figure 14.  Stress model in quiescent a position  
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The vertical stress of Figure 7 and 8 (state of rest) can be divided into two stresses of 

the same size and direction (Fig. 14). The development of the active stress state can 

be explained in the horizontal-surface non-cohesive granular materials by the change 

of the so obtained stress model. The shear stresses, which were terminated due to the 

effect of the expansion, change the stress model of Figure 14 to that of Figure 15. 

        

Figure 15.  Change of the stress model in an active state 

 

The consolidation motion occurs in the direction of the biggest stresses, i.e. in the 

direction of the stress resultants. The directions of the resultants of the stress pairs – 

which can be read from Figure 15 – incline at an angle 
2

450 
  to the horizontal 

and at an angle 090  to each other. Considering the acting (resultant) stress 

directions this stress condition consequently, corresponds to the Rankine active 

stress state. Stress 1R  starts the consolidation motion. This motion is reduced by the 

multiplication product of tg  and stress 2R  - a stress perpendicular to the stress 1R -

, 1R  mobilises shear stress. The magnitude of stress K inclining at an angle 
2

450 
  

to the horizontal, consequently is 

.21 tgRRK   

Stress 1R  consists of two stresses. 1R  and 2R  can be expressed from the illustrations 

of the stress vectors in Figure 16. 

 

Stress 1R  presents itself as the sum of two stresses; the sum of its stress components 

taken for this direction ( 2R ) develops the shear stress. 
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Figure 16.  The motion started by the resultant stress mobilises shear tress 
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The vertical component of the resultant stress K is vK .  
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The resultant stress K is 
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Comparing the value of the K with the value of the   – which is 
2

h
 - it is 

conceivable that the K is bigger. Therefore, in case of expansion, or in case of a 

more significant displacement of the wall supporting the granular material the 

motion direction of the material inclines at an angle of 
2

450 
  to the horizontal. 

Due to the expansion the stress starting the motion can be illustrated according to 

Figure 17. 

                                 

                                      Figure 17.  Motion starting stress in an active state 
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The motion is realised towards the direction of the resultants of the stresses, 

consequently, in the direction inclining at an angle of 
2

450 
  to the horizontal. The 

material moves with its whole material amount, i.e. infinitely many slip planes 

inclining at an angle of 
2

450 
  to the horizontal are developed. 

 

The horizontal component of the resultant stress K is x , i.e. 
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Pressure acting on the vertical retaining wall 

 

 

If the horizontal-terrain non-cohesive granular material is supported by a real, 

frictional, vertical wall, and an expansion occurs in the material due to its 

displacement, then the stresses acting on the wall can be determined with the 

knowledge of the angle (δ) of the friction rising on the wall: 

 

A stress with a magnitude of  , inclining at an angle δ to the horizontal acts on the 

wall. The sin -fold amount of this stress reduces the vertical stress 
2

h
 to 




 sin
2


h
. The horizontal stress component:   cos  is in direct proportion to 
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the vertical stress, just as the ratio of the vertical 
2

h
 and the horizontal 


cos

2

h
 

stress components is constant in the stress model acting inside the material. 

Consequently the proportion can be written: 
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The   can be expressed: 
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The horizontal component of the   is h : 
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The obtained result shows, that if no friction were developed on the retaining wall, 

then the static pressure would act on it; or looking at it from the other way round: no 

friction rises on the retaining wall when static pressure develops. This is proved by 

the evidence of the model experiments. 

 

If the friction rising on the retaining wall were equal to the friction rising inside the 

granular material, i.e.   , then active pressure would act on the retaining wall, 

which pressure also prevails inside the material in the active stress state. If   does 

not reach the value of the  , then an intermediate stage – between the static pressure 

and active pressure – emerges near the retaining wall. 
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In the past several people performed experimental measurements with dry sand – a 

non-cohesive granular material –. for the determination of the lateral pressure. 

Taking accuracy and model size into consideration the experiments started by 

Terzaghi in 1929 rose above the other researches. In his experiment the retaining 

wall was a 2.1-metre-high and 4.2-metre-long rigid reinforced concrete structure. 

The volume of the sandbox was 37 3m  and the displacement of the wall was 

measured with an accuracy of 0.0025 mm. The results of the experiment can be 

summed up as follows: 

While the retaining wall was motionless, a horizontal, static pressure with the 

magnitude of 
2

42.0
2

0

h
E   acted on it. At the slight displacement of the wall the 

lateral pressure decreased, then due to further displacement, tilt of the retaining wall, 

the horizontal component of the lateral pressure became constant near the value of 

2
29.0

2h
, while the tangent of the friction developed on the retaining wall moved 

near the value 54.0tg . Due to the expansion that occurred in the sand, and as a 

result of the loosening the surface sank near the displaced wall. 

The measured values correspond well to the result obtained by means of the 

previously deduced theoretic formulas: 

- the static pressure coefficient was 42.0 , 

2

cos
  , 

42.02cos  , 

085.32 , which is a value characteristic of the dry sand. 

- the horizontal stress component of the pressure acting on the frictional retaining 

wall is: 






cos1

cos

2 


tg

h
h , 

the measured value 84.0cos   and 54.0tg , 

84.054.01

84.0

2 





h
h , 

2889.0  hh , 

i.e. it is remarkably consistent with the expected measured value of ca. 0.2889≈0.29. 
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Arch formation in granular materials 

 

 

 

The phenomenon of the arch formation is one of the basic questions of the 

mechanics of the granular materials. The theoretical clarification of arch formation 

provides solution to such direct practical problems, as the bulk storage of granular 

materials in silos or their safe discharge. In the hoppers of the silos the material often 

coagulates, or an arch is formed, which impedes the gravitational discharge. 

 

 

 

Condition of arch formation 

 

 

In each case it is always the displacement of a part of the material, which generates 

arch formation. This motion can originate from consolidation, compaction or, for 

example, from the material motion that follows the opening of the gate located on 

the bottom of the hopper. Due to the displacement, the stresses in the material are 

rearranged in a way that the retaining part of the material that remains in place takes 

over also part of the stresses of the moving material part. If the stresses, which rose 

this way are big enough and their direction is adequate, an arch will be formed in the 

material, which will prevent any further displacement. The arch-forming effect of 

the displacement prevails, when the material must undergo specific deformation 

during the displacement, i.e. it must pass through for example a narrowing cross-

section. 
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On the basis of the aforementioned considerations, if we want to follow the process 

of arch formation, an infinitely long symmetric trough with narrowing cross-section, 

filled with non-cohesive granular material (Fig. 18 ) can be chosen as the starting 

point of the examination. 

                         

Figure 18.  Dimensions of the trough 

 

Let us assume, that the volume weight of the material (  ) does not change as a 

function of the depth and the material does not compress after the filling. A movable 

bottom-plate closes the b -wide lower opening of the trough, which has a flat and 

rigid side wall inclining outwards with an angle β to the vertical. The assumption of 

an infinite length makes the planar examination of the case possible. After the 

removal of the bottom-plate of the trough the material moves off – it wants to flow 

out – and undergoes specific deformation as a result of the narrowing cross-section; 

consequently the model ensures the conditions of arch formation as described 

before.  

 

If the granular material is at a quiescent state and the side walls are rigid, then static 

pressure develops inside the material; consequently the pressure is hγ in the vertical 

and λhγ in the horizontal direction, where λ is the quotient of the vertical and 

horizontal pressure i.e. it is the coefficient of the static pressure. 
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The stresses acting on the side wall inclining outwards at an angle β to the vertical, 

and respectively the resultant force of the stresses (E) can be determined according 

to magnitude and direction on the basis of Figure 19: 

                  

Figure 19.  Force equilibrium of the trough with a closed bottom plate, 

filled with granular material 

 

0G  is the weight of the material part between the vertical plane and the side wall, 

which is inclining outwards at an angle β:  

,
2

2

0 


tg
h

G   

0E is the resultant force of the horizontal static pressure: 

.
2
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0




h
E   

The resultant force from the vector triangle is: 

.
2

22
2




tg
h

E   

For the inclination angle of the resultant force, inclined to the horizontal plane it can 

be written: 

,
0

0

E

G
tg   

that is 

.





tg
tg   

If the side wall can take up the α-direction force and the stresses due to the lateral 

wall friction, then only vertical stresses with a magnitude of hγ act on the bottom 
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plate. This is only true, if ,   where the δ is the angle of the friction on the 

side wall, rising between the wall and the material. 

 

After removing the horizontal plate closing the discharge opening of the trough, 

shear planes form inside the material, due to the fact that the material can pass 

through the narrowing cross-section only by shear. If   , i.e. only vertical 

stresses acted previously on the horizontal plate, then the plane of the shear will be 

vertical. Since the material is sheared on that surface, to which the smallest force is 

needed. The force necessary for shearing the non-cohesive granular material is 

expressed by the relation,  tgAF n , using the Coulomb’s equation, where 

A ─is the sheared surface, 

n  ─ is the perpendicular stress acting on the sheared surface, 

  ─ is the friction angle of the material. 

 

The smallest shear force is necessary  for the shearing of the vertical plane, since the 

sheared surface is the smallest here and it is also the plane where the horizontal 

stresses are the smallest. (The horizontal stresses are always smaller than the vertical 

or intermediate-direction stresses) Consequently, the plane of the shear is vertical. 

 

From both of the points B and D of the trough a vertical shear plane is formed, if the 

vertical-direction force rising from the weight of the material part located above the 

opening b is equal with the shear force demand of the two planes: 

,
2

2
2




 tg
h

hb 
 

that is      tghb  . 

If the size of b is bigger than this value, then the material with a  tgh   width is 

torn off in one part and takes with itself – under the effect of the acting shear stresses 

- the other material parts as far as the total opening b of the trough. 

 

If  tghb  , then only two vertical-direction shear surfaces develops after the 

removal of the plate closing the discharge opening of the trough. At this time shear 

stresses arise inside the material on the shear plane, which are produced by the 

vertical weight force hb . The material part, which is located between the shear 
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plane and the side wall of the trough takes up the vertical shear forces F, and 

transfers them to the side walls. The side wall can only take up this vertical-direction 

plus force entirely if the resultant force ( BE ) does not exceeds the angle of the 

friction arising on the side wall. 

               

Figure 20.  Force equilibrium after the removal of the bottom plate of the trough 

 

It is well discernible on the vector polygon of Figure 20 that the resultant force BE  

does not exceed the friction angle δ, if the inclination angle of the side wall and the 

friction arising there is big enough, i.e.   . From the vector diagram the 

following can be formulated for the limit case 

.)(
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tg


  

The shear force F is the half of the material weight above the opening, since it is 

divided into two shear planes, consequently  

,
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Substituting the values of the F, 0G  an 0E  into the relation written for the tg (β+δ) 

we get: 
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simplified:  
h

tghb
tg







 )(  

consequently, if  tghb  , then starting from the lower opening of the trough, 

individual shear planes are formed and the side wall can take up the weight of the 

material part located between them by the rearrangement of the shear stresses, if 

.)(
h

tghb
tg







  

In this case the material cannot flow out and an arch is formed above the opening. 

From the relation  tghb   and the relation obtained for the )(  tg  the 

relationship 
h

b
 can be expressed: 

 tg
h

b
 , 

 tgtg
h

b
 )( . 

These two equalities and inequalities formulate the condition of the formation of the 

arch in the non-cohesive granular material. 

 

According to the solution of the arch formation, calculated with the help of the 

resultant forces, the shear force F diverts the fulcrum of the resultant force E of the 

quiescent state towards the lower opening of the trough. The intersection point of the 

line of action of the forces E and F determines the position of BE . The deviation is 

in direct ratio with the increase of the angle β. This deviation can be left out of 

consideration in case of the practical calculations. Since, in the event of a significant 

increase of the angle β the arch already rests directly on the material and not on the 

side wall (see later).  

 

 

Character of the discharge 

 

 

The character of the discharge of the granular material flowing out of the trough can 

be interpreted with the previously deduced arch conditions in cases, when any one of 

the conditions is not fulfilled. 
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a) If   , i.e.   tgtg
h

b
 )( , then the side wall cannot take entirely 

up the resultant force, which changed due to the rearrangement of the shear stresses. 

The free component of the resultant force E, parallel with the side wall, sets off the 

slide of the material along the side wall. The material part located between the shear 

plane and the side wall also moves off and mass flow occurs (Figure 21/a). 

      

Figure 21.  Typical discharges:  a) mass flow;  b) tunnel flow 

 

b) If   , i.e.   tgtg
h

b
 )( , but  tghb   and  tg

h

b
 , then  

even though the side wall can take up the resultant force, but the weight force of the 

material located above the opening is bigger than the shear force preventing the 

break away; therefore, the material with a width of b flows out vertically, while the 

material part next to it – the part between the vertical shear plane and the side wall - 

remains in its place, and flows from above to the vertically moving material part 

afterwards. Tunnel flow develops (Figure 21/b). 

 

It is easy to see that the character of the discharge is determined not only by the 

inclination angle and wall friction of the trough, but it is also influenced by the shear 

resistance, friction angle and the pressure conditions of the material. It can be 

observed in silos, that certain granular materials are discharged firstly by mass flow, 

then later by tunnel flow, proving that the pressure conditions dominating in the 

hopper also influence – though to a smaller extent than the inclination angle and 

friction of the hopper – the character of the discharge. In the course of our 

experiments performed with wheat and sand with the application of hoppers with 
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different inclination angles , it could be observed (when the experiment was carried 

out in the same  hopper and with the same material) that at first mass flow occurred, 

but when the discharge was continued, the phenomenon of tunnel flow appeared. 

The change of the character of the material discharge occurred at the pre-calculated 

height value. 

 

 

 

Mechanism of the arch formation 

 

 

Consequently, the conditions of the arch formation are, that the weight force of the 

material above the lower opening of the trough should be smaller than then the sum 

of the shear forces arising on the shear planes, and that due to their inclination angle 

and wall friction, the side walls should be able to take up the forces acting on the 

them. 

 

The shear stresses developed after the removal of the plate closing the lower opening 

of the trough are transferred onto the side wall and summed up with the stresses 

acting there. These resultant stresses form the arch. The arch surface is formed as a 

result of a second stress rearrangement. 

    

Figure 22.  The arch is formed as a result of stress rearrangement 

 

Between the edges B and D of the trough the distribution of the horizontal 

components of the resultant stresses is as shown in Figure 22/a. At the places where 

the horizontal components of the compressive stresses prove to be too small to 
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support the material against the gravitation – its shear resistance is smaller than its 

weight force arising from the gravitation – there the dropping of granules. Due to the 

bleed the stresses rearrange, presumably according to Figure 22/b, in order to 

provide enough compressive stress for the support of the material. The dropping of 

granules ceases when identical horizontal stress components – of critical value in 

terms of the dropping of granules on each point of the arch surface. The fact, that on 

each point of the arch, the same-value horizontal stress components must act, makes 

the determination of the equation describing the geometric shape of the arch 

possible. 

 

 

 

Geometric equation of the arch 

 

 

It is known, if for the support of an evenly distributed load such quadratic parabola 

is used, in whose end-point only tangential stress develops, then in each point of the 

parabola only a stress with a parabola-direction, and equal-size horizontal 

component arises. Such a parabola is loaded by no bending moment, which 

condition is of vital importance. The bending moments would produce tensile and 

compressive stresses, which a solid body can withstand, but the non-cohesive 

granular material is not capable of bearing tensile stresses. 

 

In the points B and D of the trough an equal-size stress acts in the β+δ –direction, 

while above the arch there is an almost evenly distributed load. The direction β+δ 

and the opening width b definitely determine the parabola. The maximum rise of the 

parabola that has the aforementioned characteristics is:  

)(
4

  tg
b

f . 

With the coordinate axis y placed in the symmetry plane of the opening of the 

trough, and the axis x leading through the points B and D (Fig. 23) the cuspidal point 

of the parabola intersects the axis y at the height of C. 
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Figure 23.  Parabola of the arch 

 

The general form of the equation of the quadratic parabola symmetrical to the axis y 

and running downwards is:  

CAxy  2 , 

since  f=C,   so )(
4

  tg
b

C . 

The first differential coefficient of the equation of the parabola at the place of 

2

b
x   is )('   tgy  , consequently CAxy  2 ,  Axy 2'    and 
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A can be expressed:   )(
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Substituting the values of A and C into the general equation of the parabola: 
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we get the geometric equation of the arch. From the equation formulating the arch 

condition the )(  tg  can be substituted: 
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tghb

b
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In some cases the arch is lower than the form given in the above equation. It occurs 

when the inclination angle of the trough is big. In this case the arch is supported by 

that plane of the material, which inclines at an angle ε to the vertical, and ε<β. In the 

material the angle of the friction is  , therefore,    substitutes the values of  β+δ 

in the equation that formulates the arch condition and describes the geometric form: 

,)(  tgtg
h

b
  
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2

 
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




 tg

b

xb
y . 

The arch leans directly on the material in the case, when    is smaller than β+δ. 

If from the two arch conditions the equation  tgtg  )(  restricts the ratio 
h

b
, 

the limit case can be achieved  at the identical ratio of 
h

b
  

 

.)()(  tgtgtgtg   

 

The equation formulated for the limit case gives a solution for the ε only in case of 

certain




tg

tg
 values, because it is a quadratic equation  and its discriminant can be 

negative depending on the ratio of δ and  . If the discriminant is negative, then the 

arch will continue to lean on the side wall of the trough. If the discriminant is 

positive, then the equation  

)(
4

2

 







 tg

b

xb
y  

determines the geometric form of the arch. 

If from the arch conditions  tg  restricts the ratio 
h

b
, then the angle ε can be 

calculated from the following relation:  

 

 tgtgtg  )( . 
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Principle of the hopper design 

 

 

The relations formulating the condition of arch formation in granular media makes 

the design of such hoppers possible, from which the gravitational discharge of the 

material can be ensured and which takes up the smallest possible space. 

 

If none of the arch condition is fulfilled, then the gravitational flow is ensured. If 

 tg
h

b
 , 

but     tgtg
h

b
 )( , 

then the gravitation discharge takes place in the form of a tunnel flow. If, however, 

 tgtg
h

b
 )( , 

then the discharge is of mass flow type. 

 

At the design of the hoppers, the goal is, in general, to ensure the mass flow with the 

smallest discharge opening, in a way that the vertical dimension of the hopper 

should be the smallest one possible. The principal procedure of the design for a 

hopper with circular cross-section is as follows. 

 

In the case of hoppers with circular cross-section, instead of a width b opening a 

radius r discharge opening must be used, so instead of the equation 




 tg
h

hb
2

2
2

  

evidently 




 tg
h

rhr
2

2
2

2  , 

is written, from which 

 tg
h

r
 . 
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Before designing the hopper the internal friction angle of the granular material, the 

friction angle developing on the surface of the hopper and the volume weight must 

be determined. The friction angles can be determined by shear experiments. The 

normal loads applied to the material, which was filled in the shear box, must 

correspond to the expected pressure values in the hopper. For the measurement of 

the friction angle δ it is advisable to make a packing plate of the material of the 

hopper for the shear box. The granular material is filled onto the packing plate 

placed in the shear plane of the shear box, and the angle of the friction is determined 

by shear experiments. If the material stays in the hopper for a longer period, then the 

required rheological measurements must also be performed: the shearing is carried 

out by changing the time of the normal loads acting on the sample. From the 

tendency of the curves of the material properties drawn in the logarithm of the time 

the expectable values of the material characteristics during a longer storage period 

can be concluded. If the granular material is also cohesive, or becomes cohesive in 

the course of a longer storage, then for the given normal stress value of the shear, the 

inclination angle to the horizontal axis of the straight-line drawn from the origin,  

can be taken into account (see later), as the angle of the internal shear resistance 

(effective friction angle). 

               

Figure 24.  Hopper-design construction 
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The principal procedure of the hopper design is as follows: 

 

1. Let us determine the value of the 
h

r
k 1  with the help of the  tg , which 

with the substitution of 
2

cos
   is: ;

2

sin
1




h

r
k  

 

2. Let us set up the symmetry axis of the hopper according to Figure 24 and 

construct straight lines with different 
h

r
ratios; 

 

3. Let us calculate the hopper inclination angle 1  belonging to the straight line 

1k  from the relation  tgtgk  )(  : 






tg

tgktgtgktgk
tgarc






2

44)1(1 22

; 

 

4. Let us draw angle 1  to the given point of the straight line 1k . (On the upper 

part of the hopper the mass flow can be ensured by using the hopper inclination 

angle 1 , by using an angle that is steeper than that.); 

 

5. Let us calculate the value of angle 2  for a ratio 2k , which is smaller than the 

critical value 1k ; 

 

6. Let us construct angle 2  on the intersection point obtained on the straight line 

1k and draw its leg as far as the ratio line 2k , then draw the angle 3  calculated on 

the basis of the 3k  on the straight line 2k , then continuing the construction and 

calculation we get a hopper with a curve-constituent approached with individual line 

segments; 

 

7. By determining the proportion for the given discharge-opening dimension, or 

for the upper diameter of the hopper, we obtain a dimension-correct hopper shape is 

obtained, from which the chosen dimensions can be read. 
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Consequently, the hopper profile ensuring a favourable discharge is a curve. 

 

If technological difficulties justify the construction of a hopper with a straight 

constituent, then the inclination angle calculated in the dimension of the discharge 

opening is the decisive factor. If we disregard the mass flow, the only requirement 

is, that an angle steeper than the natural angle of repose must be chosen instead of 

the ratio 1k , the inclination angle of the hopper is indifferent. The great advantage of 

the hopper with curve constituents is, that its build-in space demand is the smallest 

possible, and it can be inserted as a packing into the existing hoppers, by which the 

discharge difficulties can be efficiently improved. 

 

The flow-improving advantages of the hyperbolic hoppers with curve constituents 

are known, which are also proved experimentally by the hoppers designed on the 

basis of the present theory. 

 

 

 

Experimental results 

 

 

After the elaboration of the theory we carried out measurements with experimental 

tanks and hopper designed for the given material to be stored. There was a  2 metres 

high and 1 metre diameter material column above the hopper designed for the 

material characteristics and friction parameters of the corn-grits. At the straight 

conical hopper with an inclination angle β=30º an arch was formed as far as the 

hopper opening with a diameter of 150 mm, which impeded the gravitational 

discharge. At the same tank but with a hopper with curve-constituents, and with an 

opening diameter of 100 mm and with the construction of a shorter hopper obtained 

a safe discharge (Figure 25). 
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Figure 25.  Curve-component hopper 

 

The experimental measurements proved our theoretical calculations not only for 

corn grits, but also for wetted sand – as a model material – the calculations were 

furthermore verified with experiments for fertilisers and mixed feeds, for extracted 

soya grits, feed lime and alfalfa flour. 
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Stresses in cohesive granular materials 

 

 

 

 

Granular materials generally exhibit, smaller or bigger cohesion depending the on 

their moisture content. Concerning their mechanical behaviour, the cohesive 

granular materials show a considerable difference from the non-cohesive granular 

materials, which justifies their separate treatment. 

 

A cohesive granular material is the conglomeration of large number of solid bodies, 

which are in constant contact with each other, where the cohesion force between the 

grains – as the constituting elements of the assembly – is smaller than the cohesive 

force of the individual grains. Coulomb’s friction law pertains to the material and the 

individual grains keep their shape in spite of forces acting on them. 

 

 

 

Lateral Pressure 

 

 

According to the Coulomb’s friction law the shear resistance of the cohesive 

granular materials can be described by means of the following relation 

ctgn    

where: 

τ = shear resistance of the material; 

n  = normal stress acting on the sheared surface; 
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  = friction angle of the material; 

c = cohesional coefficient. 

The shear resistance consists of two parts, the friction (which depends on the 

pressure acting perpendicularly to the sheared surface) and the cohesion (which is 

independent of the normal stress). 

          

Figure 26.  Direct relation of the slip limit angle   and the Coulomb’s 

straight-line 

 

The relation τ – n  is linear (Figure 26); consequently, it can be represented a 

straight line, the so called Coulomb’s straight-line. The points lying on the straight-

line represent the slip limit state, i.e. boundary-equilibrium state. Inside the cohesive 

granular material, which is in a state of rest, a limit angle belongs to each depth, i.e. 

to each vertical-direction, hγ-size stress value, rising from the self-weight, where a 

slip boundary state can be found. This inclination angle to the horizontal is: Φ, 

which is the inclinational angle of the straight line linking a given point of the 

Coulomb’s straight-line and the origin, to the horizontal axis (Figure 26). The angle 

Φ changes depending on the normal stress, i.e. normal stress produced by the self-

weight inside the cohesive granular material in a state of rest. Consequently, angle Φ 

depends also on the depth. On the basis of Figure 26 the following can be formulated 

for angle Φ:  

n

tg



  , 

since     ctgn   , 
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and       cos hn , 

so                                        



cos


h

c
tgtg . 

Consequently, the angle Φ depends on the friction angle, the cohesional coefficient, 

as well as on the product of the depth and volume weight, where the relation is no 

longer linear. Inside the cohesive material, consequently the surface belonging to the 

slip boundary state is a curve, the angular coefficient of whose tangent is tg Φ. As a 

matter of fact angle Φ is nothing else but the angle of the shear resistance, similarly 

to the friction angle used for the characterisation of the non-cohesive granular 

material. The physical content of the angle Φ is identical to that of the angle   of 

the non-cohesive granular materials. (Angle Φ, which changes as a function of the 

depth, declines into constant   in the case of  c=0.) 

 

Considering the angle Φ into consideration, the laws II and III concerning the non-

cohesive granular materials can be applied to the cohesive granular materials, as 

well: 

 

II. In the cohesive granular materials at a quiescent state the stresses developed by 

the vertical-direction compressive stresses act downwards in the zone  090  

measured from the vertical direction (where the Φ is the angle of the internal shear 

resistance of the material). 

 

III. The static pressure value of the cohesive granular material, rising from the self-

weight, is the half of the product of the depth and the volume weight 








2

h
, its 

direction deviates downwards from the horizontal with the angle of the internal shear 

resistance of the material. The horizontal component of the static pressure:  

.cos
2





h

x  

The application of the static pressure of the non-cohesive granular material for the 

cohesive granular material becomes feasible due to the fact, that in granular 

materials the ratio between the vertical stress rising from the self-weight and the 

horizontal stress components depends only on the physical parameters of the 
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material, to be more precise it depends only on the angle of the shear resistance of 

the material. 

Since that angle Φ changes as a function of the depth; the cos Φ can be expressed 

from the relation 



cos


h

c
tgtg : 

,cossin



h

c
tg   




h

c
tg  coscos1 2 , 

01cos
2

coscos
22

2
222 







h

c
tg

h

c
tg  

1

1

cos
2

22

2
2













tg

h

c
tgtg

h

c

, 

since                                               



2

2

cos

1
1  tg , 

so  







2

22

2

cos1coscossincos
h

c

h

c
 , 

respectively  

 



sincos

cos
cos 2222  cch

h
. 

Substituting the relation obtained for the cos Φ into the formula x  the horizontal 

component of the static pressure is:  

 


 sincos
2

cos 2222  cchx . 

The horizontal stress components x  have a negative sign till a certain depth 0h . In 

the depth 0h  the value of the x  is 0. The depth of x =0 can be expressed:  

0sincos
2

cos 2222

0 




  


cch , 

,sincos 222222

0   cch  

  22222

0 cossin  ch , 



c
h 0 . 
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Up to the depth 0h  the horizontal-surface cohesive granular material stands also 

without support in the vertical wall. 

The value of the resultant force 0E  acting on the h high vertical retaining wall can 

be obtained by means of the definite integral of the horizontal stress components 

x , taken from the depth 0h  to h (if on the retaining wall no friction develops, 

which according to the model experiments occurs as a result of rest):  


h

h

xdhE

0

0  . 

The result of the integration:  











h

h

ch
ch

h
E

0

cossin
2

coscos
4

2222

0 

h

h

c

h

c

hc

0

1
coscos

lncos
4 22

22
3

2
































 

The term containing the ln can be left out because it is the third power of the cos  , 

which is smaller than 1, and due to the fact that product of ln has a relatively small 

value , thus 

















 c
h

c
ch

h
E 2cossin

4
cos

4

cos 2222

0 . 

Consequently, the resultant force of the static pressure of the horizontal-surface 

cohesive granular material, acting on the vertical retaining wall is :  





















 





sin2cos

4

cos 2
2222

0
h

c
cch

h
E . 

 

 

 

Inclination angle of the free slope 

 

 

The angle Φ of the straight line linking a given point of the Coulomb’s straight-line 

characteristic of the cohesive granular material and the origin, to the axis n  

characterises the shear strength of the material in the depth belonging to the given 
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normal stress n  as the friction angle    characterizes the non-cohesive granular 

material. The only difference can be discerned in the fact, that in the cohesive 

material this angle changes depending on the normal stress acting on the sheared 

surface. The tangent of the angle Φ can be expressed as a function of the depth in the 

following way: 

Starting from the previously written relation 



cos


h

c
tgtg  and 

substituting 



21

1
cos

tg
 




h

tgc
tgtg




21
, 

from which relation the tg Φ can be expressed:  

    02 2222222222  ctghtgtghtghc  , 

222

22222222

ch

chtghctgh
tg









, 

)(cos

cossin
222

222222

ch

chch
tg









. 

Taking into consideration, that in the cohesive granular materials, in a state of rest, 

the direction of the stresses rising from the self-weight inclines at an angle bigger 

than Φ to the horizontal; the biggest inclination angle of the free slope is determined 

by those stresses, which are produced by the vertical stresses rising from the self-

weight, inclining at an angle Φ to the horizontal, which just do not exceed yet the 

side of the slope. 

 

The cohesive slope can be constructed from the shear straight-line as follows (Figure 

27): 

After taking up the Coulomb’s straight-line on the basis of the shear experiments, we 

can draw angle Φ, which changes depending on the depth: the angle of the internal 

shear resistance corresponding to point A of the Coulomb’s straight-line is A . In 

the triangle OAD the side length OD is Ah cos , i.e. it is the component of the 

vertical stress rising from the self-weight, perpendicular to the direction A . 

Consequently, the hypotenuse of the triangle OA is hγ, so taking the hypotenuse into 

the span of the compass, we get point A’ by turning down the hypotenuse to the axis 
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hγ starting vertically from point O, to which point the angle A  is copied. 

Constructing the angles Φ belonging to the points taken up on the Coulomb’s 

straight-line onto the straight line hγ in this way, the envelope curve of the stress 

directions can be drawn. If the scale is divided by γ on the axis hγ, then we can 

obtain the geometric shape of the steepest slope of the horizontal-surface cohesive 

granular material. 

 

Figure 27.  Constructing the cohesion slope 

 

As far as the height 


c
 the cohesive granular material stands without support in a 

vertical wall, while the angle Φ is reduced by the increase of the depth, and goes 

towards the friction angle  , as a limit. The shape of the steepest slope is of 

hyperbolic character. If the determination of the inclination angle of the steepest, but 

flat-surface slope, in proportion to the horizontal is the task, then the inclination 

angle β of the straight line connecting the given point of the envelop curve of the 

stress directions - which curve inclines to the horizontal at an angle Φ – to the O 

origin, as a flat slope side to the horizontal, determines inclination angle of the 
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chosen slope. Constructing the envelope curve of the stress directions inclining to 

the horizontal at an angle Φ by the help of the axis h - just directed over it (Figure 

28) - , and starting from the origin O, the height belonging to the point cut on the 

envelope curve by the leg of a requested angle β provides the slope height, where 

under a slope angle β, and in case of a flat slope side the horizontal-surface cohesive 

granular material is still capable of standing without support. 

                         

Figure 28.  Relation between the slope height and slope angle 

 

The envelope curve of the Φ stress directions has a concave character (Figure 27). 

The side of the slope can be flat (Figure 28), but convex as well. The extent of the 

convexity depends on the requirement that the stress directions examined on a 

vertical plane laid through any point of the slope, changing as a function of the 

depth, inclining at an angle Φ to the horizontal should not intersect the side of the 

slope. The convex envelope curve of the slope with a given height xh  can be 

constructed according to Figure 29: 

The concave envelope curve is constructed by the method shown in Figure 27. The 

geometric shape of the xh  high concave slope is described by point B cut from the 

envelope curve by the horizontal line drawn from the point xh  and by the curve 

between 0h  O. The convex slope belonging to the height xh can be obtained by 
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turning of the curve BOh0  in such way that the positions of the points O and B are 

exchanged. 

 

It is easy to prove by means of construction that in case of a convex slope the base 

point B is a stress-collecting place; therefore, the stability of the convex slope is less 

certain than the concave slope. Furthermore it is well discernible from the 

construction that the inclination angle of the straight line segment OB, measured to 

the horizontal, is at the same time, the biggest inclination angle β of the flat-surface 

slope belonging to the height xh . 

                                    

Figure 29.  Constructing the convex slope 

 

In Figure 29 in the part stripped between the geometrical slopes of the free slope 

with convex and concave boundary states, of height xh , the geometric shape of the 

side of the slope can be so chosen that - assuming a continuous curve –that above the 

section OB it should show a convex character, below it a concave one. In case of a 

broken-line slope the examination must be performed for the Φ direction stresses 

depending on the depth, in order to prevent the stress directions from intersecting the 

side of the slope. 

 

The formation of a slope with a convex boundary position can be expected, if the, 

for example, vertical wall supporting the material is removed carefully moving 



 - 64 - 

downwards, while the slope with a concave boundary position can be obtained by 

removing the wall vertically upwards. 

 

 

 

Active stress state 

 

 

Inside the non-cohesive granular material the horizontal component of the active 

pressure is expressed by means of the following relation  











2
45

2

0 
 tg

h
x  

In the cohesive granular material the following equation can be written for the 

horizontal component of the active stress – on the basis of the analogy of the Φ and 

the   pertaining to the non-cohesive material, which occurs in a granular material 

with small friction angle and low cohesion already in relatively small depth –:  








 


2
45

2

0tg
h

x


 , 

that is  






cos

sin1

2




h
x . 

The values of the sinΦ and cosΦ can be expressed by means of the relation obtained 

from the Coulomb’s straight-line:  




cos


h

c
tgtg , 




h

c
tg  cossin , 

 tgh

c

tg 





sin
cos . 

Substituting the values of the sinΦ and cosΦ into the relation written for x :  

ch

ctghh
tg

h
x






sin

cos

2 





 , 

but     ctghh  cossin  , 
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so     












 




 tg

h

chh
x

cos2
. 

 

For the cosΦ we were able to deduce the following from the Coulomb straight-line: 

 



sincos

cos
cos 2222  cch

h
. 

Substituting the value of the cosΦ into the relation x , the horizontal stress 

component of the active pressure developing inside the material in a given depth is:  



















 








 sin

sincoscos2 2222 cch

chh
x . 

If the active stress condition is caused by the displacement – tilting – of the vertical 

and friction retaining wall, then the friction developed between the retaining wall 

and the material modifies the direction and magnitude of the stresses acting on the 

retaining wall. 

 

The friction developed between the cohesive granular material and the wall are 

generally composed of the friction factor tg depending on the normal stress acting 

on the surface and the adhesion a  independent of that, which is – in accordance with 

Coulomb’s friction law – can be illustrated as it is shown in Figure 30. 

         

Figure 30.   Friction developed between the cohesive granular material and the wall 
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At a given normal stress n  its friction angle is  . On the basis of Figure 30 the 

tg  can be expressed: 

n

tg



  , 

n

a
tgtg


  . 

In the cohesive granular material the vertical stresses rising from the self-weight 

generate the Φ direction stresses. 

         

                                Figure 31.  Cohesion stress model 

 

Applying the stress model set up for non-cohesive granular materials to the cohesive 

material, and using Φ instead of the angle   (Figure 31) – the relation of 

proportionality between the vertical and horizontal stress components can be written:  





cos
2

2








h

h

x

y
. 

Next to a friction retaining wall, part of the vertical stress components of the 

cohesive granular material are transferred onto the retaining wall; on the retaining 

wall a weight-force intake realizes. If a stress   acts on the retaining wall inclining 

at  an angle   to the horizontal, then the retaining wall takes up a vertical-direction 

stress  sin  from the material, i.e. reduces the vertical stress of the material part 

next to the retaining wall by  sin . Therefore the horizontal stress component is 

also reduced proportionally. At the same time a  cos  size horizontal stress 

component acts on the retaining wall the. On the basis of the proportion between the 

vertical and horizontal stress components it can be written: 
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












cos

sin
2

cos
2

2






h

h

h

. 

 

The   can be expressed:  






cossincos

cos

2 




h
. 

The horizontal component of the   is h :  

  cosh , 






cos1

cos

2 




tg

h
h . 

In the relation written for the tg  in case of a vertical retaining wall hn   , so 

h

h a
tg

h













cos
cos1

cos

2
. 

The h  can be expressed: 









cos1

2

2

cos






tg

ah
h , 

where 

 



sincos

cos
cos 2222  cch

h
. 

The active pressure of the cohesive granular material, acting on the friction retaining 

wall is, consequently, lower than its static pressure. If adhesion develops on the 

retaining wall the horizontal stress components are reduced by the following value 





cos1

cos

tg

a
 

as compared to the retaining wall without adhesion. The horizontal hE  component 

of the active compressive force of the cohesive granular material, acting on the 

retaining wall can be calculated by means of the definite integral of the h , where 

the lower limit of the integration is given from the condition 0h : 
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0
cos1

2

2

cos













tg

ah
. 

The equality exists, if 090 , which happens at 


c
h 0  , respectively if hγ=2a  

and so                                                


a
h

2
 , that is 



a
h

2
0  . 

Consequently, the lower limit of the integration is 0h , but for 0h  the higher value 

must be taken into account from  


c
 and 



a2
 

 







h

h

dh
tg

ah
E

0
cos1

2

2

cos
0




 

where the cos  is also the function of the h. 
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Summary 

 

 

 

 

 

The basic physical properties of the granular material differ significantly from those 

of the chemically identical materials, which are, however in the solid, liquid or 

gaseous state, therefore, the definition of granular material as an additional state of 

matter in its own right is justified. 

 

The ideal granular material is – similarly to the concept of perfect gas, ideal liquid 

and crystalline solid – a non-cohesive granular material. 

 

The basic physical-mechanical laws of the non-cohesive granular materials are as 

follows: 

 

I. In the non-cohesive granular materials only compressive and shear 

stresses can arise. 

II. In the non-cohesive granular materials in a quiescent state, the stresses 

developed by the vertical-direction compressive stresses act downwards in the 

 090  zone measured from the vertical direction. (  is the angle of 

friction of the material.) 

III. The value of the lateral pressure rising from the self-weight of the non-

cohesive granular material is (
2

h
), i.e. the half of the product of the depth (h) 

and volume weight (γ), its direction deviates from the horizontal downwards 

with the angle of friction rising in the material, if the surface is horizontal and 
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over the given depth the material fills the space evenly inclining at an angle   

to the horizontal. 

IV. The non-cohesive granular materials conforms to the physical-

mechanical laws characteristic of them until their constituting elements, the 

grains keep their relative quiescent state. When the grains get into relative 

motion – collide with each other -, the granular materials behave according to 

the physical-mechanical laws of the liquids. 

 

The physical-mechanical laws of the non-cohesive granular materials prevail with a 

statistical character, because the material itself consists of a multitude of different 

grains. 

 

The stresses – the average forces calculated for a given surface – can be divided or 

compounded as vectors. 

 

The factor of the static pressure is:   
2

cos
  . 

 

In the non-cohesive granular material, the lateral pressure — in a plane inclining at 

an angle   to the horizontal and tilting towards the assembly — is 
















tg

tgh
1

2
 and its direction inclines at an angle   to the horizontal. 

 

In the active stress condition arising due to the expansion, the motion is realised in 

the direction of 
2

450 
  to the horizontal. 

 

The horizontal component of the pressure acting on the vertical friction retaining 

wall is 





cos1

cos

2 


tg

h
h , where   is the angle of friction developed between 

the retaining wall and the material. 

 

The simultaneous existence of two equalities in a trough formulates the condition of 

the arch formation: 
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 tg
h

b
 , 

   tgtg
h

b
 , 

where: 

b is the size of the discharge orifice of the trough, 

h is the height of the trough, 

  is the factor of the static pressure, 

  is the inclination angle of the trough, measured to the vertical, 

  is the angle of the friction developed between the trough and the 

material. 

 

The discharge from the trough can occur by mass flow, if   , that is 

   tgtg
h

b
 . The tunnel flow occurs, if   , that is 

   tgtg
h

b
 , but  tghb  . 

 

The geometric equation of the arch is 
h

tghb

b

xb
y














2

4
, and 

  







 tg

b

xb
y

2

4
, if the arch is supported by the material in the plane inclining 

at an angle  to the vertical. The angle  can be calculated. 

 

Flow-proof hoppers can be designed in the knowledge of the conditions of the 

formation of the arch. The present work shows the procedure of the design. The 

experiment carried out with use of the curve-component hopper, received with this 

design procedure, proved the correctness of the theoretical calculations. 

 

In the cohesive granular material of quiescent state the stresses produced by the 

vertical-direction compressive stresses act downwards in the zone  090  

measured from the vertical direction (where   is the angle of the internal shear 

resistance of the material). 
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The value of the static pressure of the cohesive granular material, rising from the 

self-weight, is half of the product of the depth and volume weight 








2

h
, its 

direction deviates from the horizontal downwards by the angle of the internal shear 

resistance of the material. The horizontal stress component of the static pressure is:  

 cos
2




h
x , 

and 

 


 sincos
2

cos 2222  cchx , 

where the c is the cohesional coefficient. 

 

The resultant force of the static pressure of the horizontal-terrain cohesive granular 

material, acting on the vertical retaining wall is: 





















 





sin2cos

4

cos 2
2222

0
h

c
cch

h
E . 

 

The cohesive granular material in a vertical wall without support is stable until the 

height  



c
h 0  

The basic principle of the construction of the steepest slope is that the  -direction 

stresses developed by the self-weight should touch the side of the slope. The 

procedure of the construction of the cohesive slope can be found in the present work. 

 

The horizontal stress component of the active pressure of the cohesive granular 

material, acting on the vertical retaining wall having a friction angle δ and and 

adhesion coefficient a is:  









cos1

2

2

cos






tg

ah
h , 

where 

 



sincos

cos
cos 2222  cch

h
.
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